首页> 外文OA文献 >Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes
【2h】

Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes

机译:城市场景语义分割的课程领域适应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the last half decade, convolutional neural networks (CNNs) havetriumphed over semantic segmentation, which is a core task of various emergingindustrial applications such as autonomous driving and medical imaging.However, to train CNNs requires a huge amount of data, which is difficult tocollect and laborious to annotate. Recent advances in computer graphics make itpossible to train CNN models on photo-realistic synthetic data withcomputer-generated annotations. Despite this, the domain mismatch between thereal images and the synthetic data significantly decreases the models'performance. Hence we propose a curriculum-style learning approach to minimizethe domain gap in semantic segmentation. The curriculum domain adaptationsolves easy tasks first in order to infer some necessary properties about thetarget domain; in particular, the first task is to learn global labeldistributions over images and local distributions over landmark superpixels.These are easy to estimate because images of urban traffic scenes have strongidiosyncrasies (e.g., the size and spatial relations of buildings, streets,cars, etc.). We then train the segmentation network in such a way that thenetwork predictions in the target domain follow those inferred properties. Inexperiments, our method significantly outperforms the baselines as well as theonly known existing approach to the same problem.
机译:在过去的五年中,卷积神经网络(CNN)在语义分割方面取得了胜利,这是各种新兴工业应用(如自动驾驶和医学成像)的核心任务,但是训练CNN需要大量数据,这很难收集。费力地注释。计算机图形学的最新进展使得有可能在具有计算机生成的注释的逼真的合成数据上训练CNN模型。尽管如此,真实图像和合成数据之间的域不匹配会大大降低模型的性能。因此,我们提出了一种课程样式的学习方法,以最小化语义分割中的领域差距。课程领域的适应首先解决了简单的任务,以便推断出有关目标领域的一些必要属性;特别是第一个任务是学习图像上的全局标签分布和地标超像素上的局部分布,这很容易估计,因为城市交通场景的图像具有较强的特质性(例如建筑物,街道,汽车等的大小和空间关系)。 )。然后,我们以这种方式训练分段网络,使目标域中的网络预测遵循那些推断的属性。在实验上,我们的方法明显优于基准以及唯一已知的解决同一问题的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号